Primate-specific BTN3A2 protects against SARS-CoV-2 infection by interacting with and reducing ACE2

分享:

简介:

  • 作者: Ling Xu, Dandan Yu, Min Xu, Yamin Liu, Lu-Xiu Yang, Qing-Cui Zou, Xiao-Li Feng, Ming-Hua Li, Nengyin Sheng and Yong-Gang Yao
  • 杂志: BioRxiv
  • Doi: https://www.doi.org/10.1101/2024.01.13.575537
  • 出版日期: 2024 Jan 15

论文中使用的产品/服务

Quotation shows PackGene:The adeno-associated virus 8 (AAV8) was provided by PackGene Biotech. Co. Ltd (Wuhan, China).

Research Field:Hepatic Ischemia

AAV Serotype:AAV8

Targeted organ:liver

Animal or cell line strain:mice

询价

摘要

Coronavirus disease 2019 (COVID-19) is an immune-related disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 invades cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). While several attachment factors and co-receptors for SARS-CoV-2 have been identified, the complete pathogenesis of the virus remains to be determined. Unraveling the molecular mechanisms governing SARS-CoV-2 interactions with host cells is crucial for the formulation of effective prophylactic measures and the advancement of COVID-19 therapeutics. Here, we identified butyrophilin subfamily 3 member A2 (BTN3A2) as a potent inhibitor of SARS-CoV-2 infection. The mRNA level of BTN3A2 was correlated with COVID-19 severity. Upon re-analysis of a human lung single-cell RNA sequencing dataset, BTN3A2 expression was predominantly identified in epithelial cells. Moreover, this expression was elevated in pathological epithelial cells from COVID-19 patients and co-occurred with ACE2 expression in the same cellular subtypes in the lung. Additionally, BTN3A2 primarily targeted the early stage of the viral life cycle by inhibiting SARS-CoV-2 attachment through direct interactions with the receptor-binding domain (RBD) of the Spike protein and ACE2. Furthermore, BTN3A2 inhibited ACE2-mediated SARS-CoV-2 infection by reducing ACE2 in vitro and in a BTN3A2 transgenic mouse model. These results reveal a key role of BTN3A2 in the fight against COVID-19 and broaden our understanding of the pathobiology of SARS-CoV-2 infection. Identifying potential monoclonal antibodies that target BTN3A2 may facilitate disruption of SARS-CoV-2 infection, providing a therapeutic avenue for COVID-19.

关于派真

作为一家专注于AAV 技术十余年,深耕基因治疗领域的CRO&CDMO,派真生物可提供从载体设计、构建到 AAV、慢病毒和 mRNA 服务的一站式解决方案。凭借深厚的技术实力、卓越的运营管理和高标准的服务交付,我们为全球客户提供一站式CMC解决方案,包括从早期概念验证、成药性评估到IITINDBLA的各个阶段。

 

凭借我们独立知识产权的π-alphaTM 293 细胞AAV高产技术平台,我们能将AAV产量提高多至10倍,每批次产量可达1×10¹⁷vg,以满足多样化的商业化和临床项目需求。此外,我们定制化的mRNA和脂质纳米颗粒(LNP)产品及服务覆盖药物和疫苗开发的各个阶段,从研发到符合GMP的生产,提供端到端的一站式解决方案。

下载