
Mini-dCas13X–mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy
简介:
- 作者: Guoling Li, Ming Jin, Zhifang Li, Qingquan Xiao, Jiajia Lin, Dong Yang, Yuanhua Liu, Xing Wang, Long Xie, Wenqin Ying, Haoqiang Wang, Erwei Zuo, Linyu Shi, Ning Wang, Wanjin Chen, Chunlong Xu, and Hui Yang
- 杂志: J Clin Invest
- Doi: https://www.doi.org/10.1172/JCI162809
- 出版日期: 2023 Feb 1
论文中使用的产品/服务
Quotation shows PackGene:AAV9 production and delivery to DMDE30mut mice. AAVs were produced using PackGene Biotech and purified by iodixanol density gradient centrifugation.
Research Field:Duchenne muscular dystrophy
AAV Serotype:AAV9
Targeted organ:muscle
Animal or cell line strain:DMDE30mut mice were generated in the C57BL/6J background using the CRISPR/Cas9 system
摘要
Approximately 10% of monogenic diseases are caused by nonsense point mutations that generate premature termination codons (PTCs), resulting in a truncated protein and nonsense-mediated decay of the mutant mRNAs. Here, we demonstrate a mini-dCas13X-mediated RNA adenine base editing (mxABE) strategy to treat nonsense mutation-related monogenic diseases via A-to-G editing in a genetically humanized mouse model of Duchenne muscular dystrophy (DMD). Initially, we identified a nonsense point mutation (c.4174C>T, p.Gln1392*) in the DMD gene of a patient and validated its pathogenicity in humanized mice. In this model, mxABE packaged in a single adeno-associated virus (AAV) reached A-to-G editing rates up to 84% in vivo, at least 20-fold greater than rates reported in previous studies using other RNA editing modalities. Furthermore, mxABE restored robust expression of dystrophin protein to over 50% of WT levels by enabling PTC read-through in multiple muscle tissues. Importantly, systemic delivery of mxABE by AAV also rescued dystrophin expression to averages of 37%, 6%, and 54% of WT levels in the diaphragm, tibialis anterior, and heart muscle, respectively, as well as rescued muscle function. Our data strongly suggest that mxABE-based strategies may be a viable new treatment modality for DMD and other monogenic diseases.
关于派真
作为一家专注于AAV 技术十余年,深耕基因治疗领域的CRO&CDMO,派真生物可提供从载体设计、构建到 AAV、慢病毒和 mRNA 服务的一站式解决方案。凭借深厚的技术实力、卓越的运营管理和高标准的服务交付,我们为全球客户提供一站式CMC解决方案,包括从早期概念验证、成药性评估到IIT、IND及BLA的各个阶段。
凭借我们独立知识产权的π-alphaTM 293 细胞AAV高产技术平台,我们能将AAV产量提高多至10倍,每批次产量可达1×10¹⁷vg,以满足多样化的商业化和临床项目需求。此外,我们定制化的mRNA和脂质纳米颗粒(LNP)产品及服务覆盖药物和疫苗开发的各个阶段,从研发到符合GMP的生产,提供端到端的一站式解决方案。
